ОГЭ, Математика. Геометрия: Задача №F7AB41 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По первому свойству равностороннего треугольника, все его углы равны 60°.
По теореме синусов:
2R=a/sin60
a=2R*sin60= (найдем sin60 по таблице)
=2*12*√3/2=12√3
По второму свойству равностороннего треугольника, высота равна:

Ответ: 18

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №34A270

Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.



Задача №63F1BD

Точка О – центр окружности, /BOC=70° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №01130C

Стороны AC, AB, BC треугольника ABC равны 25, 11 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если ∠KAC>90°.



Задача №5C5771

Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 9 м. Найдите длину троса.



Задача №AC0D7D

На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что отрезки BD и BE тоже равны. Докажите, что треугольник АВС — равнобедренный.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема синусов
Теорема, устанавливающая зависимость между сторонами треугольника и противолежащими им углами.
Для произвольного треугольника:
,
где a, b, c — стороны треугольника, α, β, γ — соответственно противолежащие им углы, а R — радиус окружности, описанной вокруг треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика