Геометрическая прогрессия задана условием bn=40*(-2)n. Найдите сумму первых её 5 членов.
Чтобы найти сумму первых 5 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=40*(-2)1=-80 (из условия задачи). А q=-2.
Тогда S5=-80*(1-(-2)5)/(1-(-2))=-80*(1-(-32))/3=-80*33/3=-80*11=-880
Ответ: S5=-880
Поделитесь решением
Присоединяйтесь к нам...
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.
Дана арифметическая прогрессия: -6; -3; 0; … Найдите сумму первых сорока её членов.
Дана арифметическая прогрессия (an), разность которой равна 6,8, a1=-3. Найдите a14.
Выписаны первые несколько членов арифметической прогрессии: 1; 3; 5; … Найдите сумму первых шестидесяти её членов.
Дана арифметическая прогрессия: 6; 8; 10; … . Найдите сумму первых шестидесяти её членов.
Комментарии: