ОГЭ, Математика. Числовые последовательности: Задача №75ED29 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Вариант №1
Чтобы найти сумму первых 5 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=-77*21=-154 (из условия задачи). А q=2.
Тогда S5=-154*(1-25)/(1-2)=-154*(1-32)/(-1)=-154*31=-4774
Ответ: -4774
Вариант №2
В данной задаче надо найти сумму всего 5-и первых членов. Поэтому можно просто вычислить значения каждого члена и сложить их:
b1=-77*2n=-154
По определению геометрической прогрессии:
b2=b1*q=-154*2=-308
b3=b2*q=-308*2=-616
b4=-616*2=-1232
b5=-1232*2=-2464
S5=-154-308-616-1232-2464=-4774
Ответ: -4774

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9B0CDE

Последовательность задана условиями b1=8, bn+1=-4*1/bn. Найдите b2.



Задача №00A508

Геометрическая прогрессия задана условием bn=88*2n. Найдите сумму первых её 4 членов.



Задача №F160C8

Геометрическая прогрессия (bn) задана условиями: b1 = –128, bn+1=1/2*bn. Найдите b7.



Задача №1D0E75

Выписаны первые несколько членов арифметической прогрессии: -7; -5; -3; … Найдите сумму первых пятидесяти её членов.



Задача №E716A4

Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Формула суммы n-первых членов геометрической прогрессии.

,
где q≠1.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика