Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
В данной
арифметической прогрессии каждый последующий член меньше предыдущего на 17, следовательно d=-17
Вычислим сумму первых 17-и членов:
S17=(2a1+(n-1)d)n/2=(2*48+(17-1)(-17))*17/2=(96+16(-17))*17/2=-176*17/2=-88*17=-1496
Ответ: S17=-1496
Поделитесь решением
Присоединяйтесь к нам...
Записаны первые три члена арифметической прогрессии: 20; 13; 6. Какое число стоит в этой арифметической прогрессии на 81-м месте?
Выписаны первые три члена арифметической прогрессии:
-4; 2; 8;...
Найдите 8-й член этой прогрессии.
В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 6 квадратов больше, чем в предыдущей. Сколько квадратов в 53-й строке?
Последовательность задана формулой an=66/(n+1). Сколько членов этой последовательности больше 8?
, где a1 - первый член прогрессии, an - член с номером n, n — количество суммируемых членов.
, где a1 — первый член прогрессии, d — разность прогрессии, n — количество суммируемых членов.
Комментарии: