ОГЭ, Математика. Числовые последовательности: Задача №74FE0A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Числовые последовательности: Задача №74FE0A

Задача №54 из 182
Условие задачи:

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 2 квадрата больше, чем в предыдущей. Сколько квадратов в 117-й строке?

Решение задачи:

Данная фигура составляется по принципу арифметической прогрессии.
Очевидно, что a1=8, а d=2.
Надо найти a117.
Воспользуемся формулой an=a1+(n-1)d
a117=8+(117-1)2=8+116*2=240
Ответ: в 117-ой строке 240 квадратов.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №A561B0

Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.



Задача №F8A2D4

Геометрическая прогрессия задана условиями b1=-7, bn+1=3bn. Найдите сумму первых 5 её членов.



Задача №EA0BD3

Последовательность (bn) задана условиями: b1=4,
Найдите b3.



Задача №417983

Дана геометрическая прогрессия (bn), для которой b3=4/7, b6=-196. Найдите знаменатель прогрессии.



Задача №E73061

Выписаны первые несколько членов арифметической прогрессии: 2; 6; 10; … Найдите её шестнадцатый член.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика