Последовательность задана формулой an=34/(n+1). Сколько членов этой последовательности больше 6?
Для решения этой задачи надо решить неравенство:
34/(n+1)>6
34>6(n+1)
34>6n+6
28>6n
14>3n
14/3>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 4. Таким образом получается, что при n=1, 2, 3 и 4 an будет больше 6.
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия: -6; -3; 0; … Найдите сумму первых сорока её членов.
В геометрической прогрессии сумма первого и второго членов равна 200, а сумма второго и третьего членов равна 50. Найдите первые три члена этой прогрессии.
Арифметическая прогрессия задана условием an=3,8-5,7n. Найдите a6.
Записаны первые три члена арифметической прогрессии: 30; 24; 18. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Выписано несколько последовательных членов геометрической прогрессии: …; 1,75; x; 28; -112; … Найдите член прогрессии, обозначенный буквой x.
Комментарии: