ОГЭ, Математика. Числовые последовательности: Задача №BFB534 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Для решения этой задачи надо решить неравенство:
34/(n+1)>6
34>6(n+1)
34>6n+6
28>6n
14>3n
14/3>n
Так как в арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 4. Таким образом получается, что при n=1, 2, 3 и 4 an будет больше 6.
Ответ: 4

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №229834

Дана арифметическая прогрессия (an), разность которой равна -7,9, a1=1,7. Найдите a8.



Задача №5E55A1

Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 4 квадрата больше, чем в предыдущей. Сколько квадратов в 54-й строке?



Задача №0000DB

(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.



Задача №AEC6A3

Дана геометрическая прогрессия (bn), знаменатель которой равен 1/2, b1=2. Найдите сумму первых 4 её членов.



Задача №9BE0A5

Записаны первые три члена арифметической прогрессии: 10; 6; 2. Какое число стоит в этой арифметической прогрессии на 101-м месте?

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Арифметическая прогрессия - числовая последовательность вида a1, a1+d, a1+2d,..., a1+(n-1)d,...то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага, или разности прогрессии):
an=an-1+d
Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:
an=a1+(n-1)d, где a1 - первый член последовательности, d - ее разность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика