Последовательность задана формулой an=34/(n+1). Сколько членов этой последовательности больше 6?
Для решения этой задачи надо решить неравенство:
34/(n+1)>6
34>6(n+1)
34>6n+6
28>6n
14>3n
14/3>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 4. Таким образом получается, что при n=1, 2, 3 и 4 an будет больше 6.
Ответ: 4
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия (bn) задана условиями: b1 = –128, bn+1=1/2*bn. Найдите b7.
Арифметическая прогрессия (an) задана условиями: a1=3, an+1=an+4. Найдите a10.
Выписаны первые три члена геометрической прогрессии:
-1024; -256; -64; …
Найдите сумму первых пяти её членов.
Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Дана арифметическая прогрессия (an), разность которой равна -7,9, a1=1,7. Найдите a8.
Комментарии: