ОГЭ, Математика. Геометрия: Задача №0883B2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0883B2

Задача №743 из 1087
Условие задачи:

Длина хорды окружности равна 140, а расстояние от центра окружности до этой хорды равно 24. Найдите диаметр окружности.

Решение задачи:

Обозначим ключевые точки, как показано на рисунке. Проведем отрезок АО.
Рассмотрим треугольник AOB.
Данный треугольник прямоугольный, так как расстояние ОВ является высотой (кротчайшее расстояние).
AB равна половине длины хорды (по третьему свойству хорды).
Тогда, по теореме Пифагора:
AO2=OB2+AB2
AO2=242+(140/2)2
AO2=576+4900=5476
AO=74 - это радиус окружности, следовательно, диаметр D=2*AO=2*74=148
Ответ: 148

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №481278

В треугольнике ABC угол C равен 90°, cosB=5/6, AB=18. Найдите BC.



Задача №1ACD29

Катеты прямоугольного треугольника равны 46 и 2. Найдите синус наименьшего угла этого треугольника.



Задача №758295

Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.



Задача №F9DD7F

В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 30°. Найдите величину угла ODC.



Задача №52C267

В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Хорда — отрезок прямой линии, соединяющий две точки данной кривой (например, окружности, эллипса, параболы).
Свойства хорды окружности:
1) Хорды являются равноудаленными от центра окружности только тогда, когда они равны по длине.

AB=CD
2) Серединный перпендикуляр к хорде проходит через центр окружности.

3) Радиус, перпендикулярный хорде, делит эту хорду пополам.

4) Дуги, заключенные между двумя равными параллельными хордами, равны.

5) При пересечении двух хорд окружности, получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой.

AM*MB=CM*MD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика