В трапеции ABCD основания AD и BC равны соответственно 49 и 21, а сумма углов при основании AD равна 90°. Найдите радиус окружности, проходящей через точки A и B и касающейся прямой CD, если AB=20.
Продлим стороны AB и CD до пересечения друг с другом.
Рассмотрим треугольник AED.
По
теореме о сумме углов треугольника:
180°=∠EDA+∠DAE+∠AED
180°=90°+∠AED
∠AED=90°
Следовательно треугольник AED -
прямоугольный.
Рассмотрим треугольники AED и BEC.
∠AED - общий
∠EBC=∠EAD (т.к. это
соответственные углы)
Треугольники AED и BEC
подобны (по
первому признаку подобия треугольников).
Тогда по
определению подобия:
AD/BC=AE/BE
AD/BC=(AB+BE)/BE
49/21=(20+BE)/BE
49BE/21=20+BE
28BE/21=20
BE=20*21/28=15
Обозначим точку F - точку касания прямой CD и окружности.
OF - искомый радиус окружности. Он перпендикулярен касательной EC (по
свойству касательной).
Проведем отрезок ОК перпендикулярно АВ.
OK - серединный перпендикуляр к
хорде AB (
третье свойство хорды)
Получается, что BK=AB/2=20/2=10.
EK=BE+BK=15+10=25
EK=OF=R=25, так как OKEF - прямоугольник.
Ответ: 25
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Квадрат является прямоугольником.
3) Сумма углов любого треугольника равна
180°.
Найдите площадь трапеции, изображённой на рисунке.
Укажите номера верных утверждений.
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Вертикальные углы равны.
3) Любая биссектриса равнобедренного треугольника является его медианой.
Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит её пополам. Найдите сторону АВ, если сторона АС равна 10.
Комментарии:
(2018-01-19 21:22:57) Администратор: Евгений Бакин, согласен с Вами. Решение упрощено по Вашему варианту.
(2017-12-29 11:41:46) Евгений Бакин: Проще найти сразу OF=EK=EB+BK=15+10=25