ОГЭ, Математика. Геометрия: Задача №07378B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем высоту CF.
Рассмотрим треугольники ABE и DCF.
∠BAE=∠CDF=45° (по свойству равнобедренной трапеции).
∠BEA=∠CFD=90° (так как BE и CF - высоты).
Используя теорему о сумме углов треугольника, получаем, что: ∠EBA=∠FCD
AB=CD (по определению равнобедренной трапеции).
Следовательно, данные треугольники равны (по второму признаку равенства треугольников).
Значит, AE=FD.
Рассмотрим треугольник ABE.
По определению tg∠BAE=BE/AE
tg45°=5/AE=1 (по таблице)
AE=5
EF=BC=6 (так как BCFE - прямоугольник)
AD=AE+EF+FD=5+6+5=16
Ответ: AD=16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №026D2D

Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.



Задача №0D847E

Найдите площадь треугольника, изображённого на рисунке.



Задача №2C0095

В трапеции АВСD боковые стороны AB и CD равны, СН — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 16, а меньшее основание BC равно 6.



Задача №151151

В треугольнике ABC проведена биссектриса AL, угол ALC равен 152°, угол ABC равен 137°. Найдите угол ACB. Ответ дайте в градусах.



Задача №029772

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, перпендикулярна основанию.
2) Диагонали ромба точкой пересечения делятся пополам.
3) Из двух хорд окружности больше та, середина которой находится дальше от центра окружности.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Свойства равнобедренной трапеции:
1) Диагонали равнобедренной трапеции равны .
2) Углы при одном основании равнобедренной трапеции равны.
3) Только около равнобедренной трапеции можно описать окружность; она совпадает с окружностью, описанной около любого треугольника с вершинами в вершинах трапеции. Её центр лежит на серединном перпендикуляре к основаниям трапеции.
4) Если центр описанной окружности лежит на основании трапеции, то ее диагональ перпендикулярна боковой стороне.
5) В равнобедренную трапецию можно вписать окружность, если боковая сторона равна средней линии.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика