ОГЭ, Математика. Геометрия: Задача №E538A8 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

По условию задачи, четырехугольник вписан в окружность, следовательно, сумма его противоположных углов равна 180° (по свойству описанной окружности).
Т.е. ∠ABC+∠ADC=180°
∠ADC=180°-∠ABC
∠KDA - является смежным углу ADC, следовательно:
∠KDA+∠ADC=180°
Подставляем значение угла ADC:
∠KDA+(180°-∠ABC)=180°
∠KDA+180°-∠ABC=180°
∠KDA+180°-180°=∠ABC
∠KDA=∠ABC
Т.е. эти углы равны.
Рассмотрим треугольникик AKD и BKC.
∠BKC - общий.
∠KDA=∠ABC, это мы определили ранее.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Тогда:
BK/DK=BC/AD
AD=(DK*BC)/BK=(15*12)/20=(3*12)/4=3*3=9
Ответ: 9

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №BD807C

Найдите тангенс угла AOB.



Задача №705153

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 150°, а CD=26.



Задача №F99836

Радиус окружности, вписанной в равносторонний треугольник, равен 10√3. Найдите длину стороны этого треугольника.



Задача №0CF105

Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).



Задача №2EB3D5

В выпуклом четырёхугольнике ABCD углы BCA и BDA равны. Докажите, что углы ABD и ACD также равны.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Описанная окружность
— окружность, проходящая через все четыре вершины четырехугольника. Описанная окружность единственна.

Можно описать окружность около:
1) любого прямоугольника (частный случай квадрат)
2) любой равнобедренной трапеции
3) любого четырехугольника, у которого сумма противоположных углов равна 180°.
(См. рисунок: ∠A+∠C=∠B+∠D=180°)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика