В ромбе ABCD угол ABC равен 146°. Найдите угол ACD. Ответ дайте в градусах.
Рассмотрим треугольник ABC.
AB=BC (по определению ромба).
Следовательно, треугольник ABC -
равнобедренный.
∠CAB=∠ACB (по свойству равнобедренного треугольника).
По
теореме о сумме углов треугольника:
180°=∠CAB+∠ACB+∠ABC
180°=∠ACB+∠ACB+146°
180°-146°=2*∠ACB
34°=2*∠ACB
∠ACB=17°
Рассмотрим треугольники ABC и ADC:
1) AB=BC=CD=DA (по определению ромба).
2) AC - общая сторона.
Тогда по 3-му признаку данные треугольники равны.
Следовательно:
∠ACD=∠ACB=17°
Ответ: 17
Поделитесь решением
Присоединяйтесь к нам...
В трапеции ABCD AB=CD, ∠BDA=49° и ∠BDC=13°. Найдите угол ABD. Ответ дайте в градусах.
Найдите угол ABC. Ответ дайте в градусах.
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=25, BC=15, CF:DF=3:2.
Найдите площадь параллелограмма, изображённого на рисунке.
Комментарии: