Юмор

Автор: Катя
- Вовочка, у тебя в кармане сто рублей, ты попросил у отца еще сто, сколько у тебя будет д...читать далее

ОГЭ, 9-й класс. Математика: Геометрия


Задача №887 из 940. Номер задачи на WWW.FIPI.RU - DC3FCE


Радиус окружности, описанной около квадрата, равен 142. Найдите радиус окружности, вписанной в этот квадрат.

Решение задачи:

Проведем диаметры описанной окружности, как показано на первом рисунке.
Очевидно, что квадрат разделился на 4 равных треугольника, углы, которые опираются на центр окружности (О), равны 360°/4=90°, т.е. эти треугольники прямоугольные.
Тогда, по теореме Пифагора:
AB2=R2+R2
AB2=2R2
AB2=2(142)2
AB2=2*142*2
AB2=142*22=(14*2)2=282
AB=28
Проведем радиус вписанной окружности, как на втором рисунке.
Очевидно, что:
r=AB/2=28/2=14
Ответ: 14

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

9-й класс, ОГЭ: Математика

11-й класс, ЕГЭ: Математика (базовый уровень)

X

Введите порядковый номер задачи для раздела 'ОГЭ, 9-й класс. Математика: Геометрия' (от 1 до 940)

X

Введите номер задачи с сайта fipi.ru (шестизначный номер из букв и цифр)

X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2018. Все права защищены. Яндекс.Метрика