Укажите номера верных утверждений.
1) Любой квадрат является ромбом.
2) Против равных сторон треугольника лежат равные углы.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Рассмотрим каждое утверждение:
1) "Любой квадрат является ромбом", это утверждение верно, т.к.
квадрат удовлетворяет определению
ромба.
2) "Против равных сторон треугольника лежат равные углы", это утверждение верно (по свойству
равнобедренного и
равностороннего треугольников).
3) "Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности", это утверждение верно. Эта система (точка и окружность) имеет
ось симметрии - прямая проведенная через данную точку и центр окружности. Соответственно, если можно провести одну
касательную, то можно провести и вторую, симметричную первой.
Ответ: 1), 2) и 3)
Поделитесь решением
Присоединяйтесь к нам...
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.
Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.
В треугольнике ABC угол C равен 90°, sinA=0,4, AC=√
Какие из данных утверждений верны? Запишите их номера.
1) Если три угла одного треугольника соответственно равны трём углам другого треугольника, то такие треугольники подобны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром описанной окружности треугольника является точка пересечения серединных перпендикуляров к его сторонам.
Комментарии: