ОГЭ, Математика. Геометрия: Задача №466413 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем диаметры описанной окружности, как показано на первом рисунке.
Очевидно, что квадрат разделился на 4 равных треугольника, углы, которые опираются на центр окружности (О), равны 360°/4=90°, т.е. эти треугольники прямоугольные.
Тогда, по теореме Пифагора:
AB2=R2+R2
AB2=2R2
AB2=2(362)2
AB2=2*362*2
AB2=362*22=(36*2)2=722
AB=72
Ответ: 72

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №3B3D55

Найдите угол ABC . Ответ дайте в градусах.



Задача №F0BC63

Точка О – центр окружности, /BOC=50° (см. рисунок). Найдите величину угла BAC (в градусах).



Задача №DC3FCE

Радиус окружности, описанной около квадрата, равен 142. Найдите радиус окружности, вписанной в этот квадрат.



Задача №EABBBB

В трапеции ABCD AB=CD, ∠BDA=35° и ∠BDC=58°. Найдите угол ABD. Ответ дайте в градусах.



Задача №91D482

В окружности с центром в точке O отрезки AC и BD — диаметры. Угол AOD равен 50°. Найдите угол ACB. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанная окружность
— окружность, касающаяся всех трёх сторон треугольника. Она единственна. Центр вписанной окружности называется инцентром.

Описанная окружность
— окружность, проходящая через все три вершины треугольника. Описанная окружность также единственна.

Вневписанная окружность
— окружность, касающаяся одной стороны треугольника и продолжения двух других сторон. Таких окружностей в треугольнике три. Их радикальный центр — центр вписанной окружности срединного треугольника, называемый точкой Шпикера.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика