Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=5, а расстояние от точки K до стороны AB равно 5.
Обозначим точки пересечения
биссектрис со сторонами как показано на рисунке.
∠FAK=∠BEK (т.к. это
накрест-лежащие углы).
Получается, что ∠BAK=∠BEK, следовательно треугольник ABE -
равнобедренный (по
свойству равнобедренного треугольника).
Тогда AB=BE.
Треугольники ABK и EBK равны по
первому признаку равенства треугольников.
Следовательно и
высоты у этих треугольников тоже равны.
Аналогично, равны и треугольники ABK и AFK.
Получается, что высота
параллелограмма равна 2h.
Площадь
параллелограмма равна SABCD=2h*BC=2*5*5=50
Ответ: 50
Поделитесь решением
Присоединяйтесь к нам...
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника CKD.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=63. Диагональ параллелограмма BD равна 65. Найдите площадь параллелограмма.
В треугольнике два угла равны 46° и 78°. Найдите его третий угол. Ответ дайте в градусах.
В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
Комментарии:
(2015-10-07 22:45:45) Администратор: Валерий, спасибо за подсказку другого подхода к решению.
(2015-10-07 22:28:15) Валерий: Точки, лежащие на биссектрисах углов равноудалены от сторон этих углов, значит точка К равноудалена от AB, AD и BC, тогда расстояние от точки К до ВС равно расстоянию от точки К до AD и равно расстоянию от точки К до АВ, т.е. равно 5. Тогда высота H к ВС равна 10 и SABCD=H*BC=10*5=50. Ответ: 50. Благодарю авторов за сайт и за ответ.