ОГЭ, Математика. Геометрия: Задача №7FDE5C | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №7FDE5C

Задача №713 из 1087
Условие задачи:

Вершины ромба расположены на сторонах параллелограмма, а стороны ромба параллельны диагоналям параллелограмма. Найдите отношение площадей ромба и параллелограмма, если отношение диагоналей параллелограмма равно 57.

Решение задачи:

Для удобства введем обозначения:
a - сторона ромба (они равны по определению ромба)
d - диагональ AC
57d - диагональ BD (по условию)
AE - k
EB - t
Площадь параллелограмма через диагонали равна BD*AC*sinα/2 = 57d*d*sinα/2 = 28,5d2*sinα, где α - угол между диагоналями (при чем не важно какой, так как синусы обоих углов будут равны друг другу).
Так как стороны ромба параллельны диагоналям, образуется маленький параллелограмм, а значит противоположные углы равны (по свойству параллелограмма).
Рассмотрим треугольники ABC и EBF.
∠EBF - общий
∠BFE=∠BCA (это соответственные углы)
Следовательно, треугольники ABC и EBF подобны (по первому признаку подобия).
Тогда EF/AC=a/d=t/(t+k)
Аналогично, подобны и треугольники ABD и AEH.
Для них справедливо: a/57d=k/(t+k)
Складываем эти два уравнения:
a/d+a/57d=t/(t+k)+k/(t+k)
57a/57d+a/57d=(t+k)/(t+k)
58a/57d=1
58a=57d
a=57d/58
Sромба=a2sinα
Sпараллелограмма=28,5d2*sinα (это мы выяснили ранее)
Sромба/Sпараллелограмма=(a2sinα)/(28,5d2*sinα)=a2/(28,5d2)=(57d/58)2/(28,5d2)=(572*d2)/(582*28,5*d2)=3249/(3364*28,5)=114/3364=57/1682
Ответ: 57/1682

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №361445

Четырёхугольник ABCD со сторонами AB=25 и CD=16 вписан в окружность. Диагонали AC и BD пересекаются в точке K, причём ∠ AKB=60°. Найдите радиус окружности, описанной около этого четырёхугольника.



Задача №12CD1F

Точка О – центр окружности, /BAC=60° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №22CB44

В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.



Задача №F33FF6

Лестница соединяет точки A и B и состоит из 20 ступеней. Высота каждой ступени равна 30 см, а длина – 40 см. Найдите расстояние между точками A и B (в метрах).



Задача №EE99B1

Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 45° и 120°, а CD=40.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Параллелограмм —
это четырёхугольник, у которого противоположные стороны попарно параллельны, то есть лежат на параллельных прямых.

AB||CD и BC||AD
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика