Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.
Рассмотрим каждое утверждение.
1) "У
равнобедренного треугольника есть ось симметрии", это утверждение верно, ось совпадает с
высотой, опущенной к основанию треугольника.
2) "Если в
параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат", это утверждение верно, т.к. оно совпадает со
свойством квадрата.
3) "Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности", это утверждение неверно, окружности не будут пересекаться, если, например, центры окружностей совпадают.
Поделитесь решением
Присоединяйтесь к нам...
Основания равнобедренной трапеции равны 3 и 17, боковая сторона равна 25. Найдите длину диагонали трапеции.
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АВ, если сторона АС равна 4.
В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 8.
В прямоугольном треугольнике катет и гипотенуза равны 16 и 34 соответственно. Найдите другой катет этого треугольника.
Комментарии: