В треугольнике ABC DE – средняя линия. Площадь треугольника CDE равна 35. Найдите площадь треугольника ABC.
Проведем
высоту CH.
Средняя линия делит CH пополам, как и стороны треугольника.
Следовательно, CK=KH.
По
теореме о средней линии AB=2DE.
SCDE=DE*CK/2=35.
DE*CK=70
SABC=AB*CH/2=2DE*2CK/2=2DE*CK=2*70=140
Ответ: SABC=140
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=6, AB=10. Найдите sinB.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 8 и 7. Найдите площадь параллелограмма ABCD.
В параллелограмме ABCD точка M — середина стороны CD. Известно, что MA=MB. Докажите, что данный параллелограмм — прямоугольник.
Сторона равностороннего треугольника равна 2√
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=24, BF=7.
Комментарии: