Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
По условию задачи ВМ -
медиана треугольника АВС, следовательно, по
свойству медианы,
площади треугольников АВМ и ВСМ равны, и равны половине площади треугольника АВС.
SABM=SBCM=(SABC)/2.
В свою очередь, AK является медианой для треугольника АВМ, следовательно, по тому же
свойству медианы
SABК=SAKM=(SABM)/2=(SABC)/4.
Проведем отрезок СК.
СК является
медианой для треугольника СМВ, следовательно,
SCMK=SCKB=(SCMB)/2=(SABC)/4.
Проведем отрезок МЕ, параллельно АР.
МЕ является
средней линией для треугольника АРС, следовательно (по
теореме о средней линии) СЕ=ЕР. А для треугольника МВЕ
КР является
средней линией, следовательно ВР=ЕР(=СЕ). Т.е. сторона ВС делится на три равные части точками
Р и Е.
Проведем
высоту h, как показано на рисунке. h является общей высотой для треугольников СКВ и СКР.
Выше мы определили, что SCKB=(SABC)/4. Площадь этого же треугольника =(1/2)*h*BC.
SCKP=(1/2)*h*РС=(1/2)*h*(2/3)*ВС=(2/3)*(1/2)*h*BC=(2/3)SCKB=(2/12)SABC
=(1/6)SABC.
SKPCM=SCMK+SCKP=(SABC)/4+(1/6)SABC=(5/12)SABC.
SABC/SKPCM=12/5.
Ответ: SABC/SKPCM=12/5=2,4.
Поделитесь решением
Присоединяйтесь к нам...
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
В треугольнике ABC угол C равен 90°, AC=4, AB=5. Найдите sinB.
В треугольнике ABC известно, что AC=54, BM — медиана, BM=43. Найдите AM.
В остроугольном треугольнике ABC проведена высота BH, ∠BAC=37°. Найдите угол ABH. Ответ дайте в градусах.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и ADB подобны.
Комментарии:
(2015-05-26 03:55:13) Сергей: Это задание С6, то есть 26. Было в ГИА по математике 28.05.2013.
(2015-05-24 17:25:48) Администратор: Валерия, к сожалению, у меня нет такой информации.
(2015-05-24 13:29:05) Валерия: Это задание из части С?) Просто по сложности не похоже на часть B, вот интересно это задание C4 или C6?( то есть в геометрии из части С первое задание или последнее), там вроде 24 или 26 задание, так наверное правильнее сказать
(2015-05-24 11:49:55) Администратор: Валерия, а что такое c4 и c6?
(2015-05-24 11:31:16) Валерия: Это c4 или c6?