ОГЭ, Математика. Геометрия: Задача №3B4B4B | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №3B4B4B

Задача №716 из 1087
Условие задачи:

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 136. Найдите стороны треугольника ABC.

Решение задачи:

Вариант №1
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=136/2=68.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). SEDC=SEDB=(BE*OD)/2=(136*68)/2=68*68=4624
SABE=(BE*AO)/2=(136*68)/2=4624
Т.е. SABE=SEDC=SEDB=4624
Тогда, SABС=3*4624=13872
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
SABD=(AD*BO)/2=SABC/2
(136*BO)/2=13872/2
BO=13872/136=102
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB2=BO2+AO2
AB2=1022+682
AB2=10404+4624=15028
AB=15028=4*3757=4*13*289=2*17*13=3413
BC=2AB=2*3413=6813
Рассмотрим треугольник AOE.
OE=BE-BO=136-102=34
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE2=AO2+OE2
AE2=682+342=4624+1156=5780
AE=5780=4*5*289=2*17*5=345
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
6813/3413=CE/(345)
2=CE/(345)
CE=685
AC=AE+CE=345+685=1025
Ответ: AB=3413, BC=6813, AC=1025


Вариант №2 (Предложил Всеволод).
Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD и AO=OD=AD/2=136/2=68.
Проведём через точку C прямую, параллельную AD. Продлим BA и BE до пересечения с этой прямой в точках F и G соответственно.
AF=AB (по теореме Фалеса. AD и FC параллельны и разбивают BC на два отрезка 1:1, т.е. на равные отрезки, следовательно и BF они разобьют на равные отрезки).
Тогда получается, что:
AF=AB=BD=CD
Т.е. получается равнобедренный треугольник BCF со средней линией AD и медианами BG и CA, которые в точке пересечения E делятся в отношении 2:1 считая от вершин (по свойству медианы).
BE=136 (по условию задачи)
EG=BE/2=136/2=68
BG=BE+EG=136+68=204
BO=OG=BG/2=204/2=102
Рассмотрим треугольник ABO.
Он прямоугольный (по условию задачи), тогда по теореме Пифагора:
AB2=BO2+AO2
AB2=1022+682
AB2=10404+4624
AB2=15028
AB=15028=1156*13=1156*13=3413
BC=2AB=2*3413=6813
Рассмотрим треугольник AOE.
OE=OG-EG=102-68=34.
AOE тоже прямоугольный, следовательно по теореме Пифагора:
AE2=AO2+OE2
AE2=682+342
AE2=4624+1156=5780
AE=5780=1156*5=345
EC=2AE=2*345=685 (мы ранее выяснили, что медианы делятся в отношении 2:1 начиная от вершины)
AC=AE+EC=345+685=1025
Ответ: AB=3413, BC=6813, AC=1025

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04CBF1

Найдите площадь ромба, если его диагонали равны 39 и 2.



Задача №DDFE48

Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.



Задача №1A6CCD

В прямоугольном треугольнике один из катетов равен 24, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.



Задача №755B8F

В треугольнике ABC известно, что AB=8, BC=10, AC=14. Найдите cos∠ABC.



Задача №032880

В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=104°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Медиана треугольника
- отрезок внутри треугольника, соединяющий вершину треугольника с серединой противоположной стороны, а также прямая, содержащая этот отрезок.
Свойства медианы треугольника:
1) Медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
2) Медиана разбивает треугольник на два равновеликих треугольника.
3) Треугольник делится тремя медианами на шесть равновеликих треугольников.
4) Большей стороне треугольника соответствует меньшая медиана.
5) Из векторов, образующих медианы, можно составить треугольник.
6) При аффинных преобразованиях медиана переходит в медиану.
7) Формула медианы через стороны (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):, где mc — медиана к стороне c; a, b, c — стороны треугольника. В частности, сумма квадратов медиан произвольного треугольника в 4/3 раза меньше суммы квадратов его сторон:
8) Формула стороны через медианы: , где ma, mb, mc медианы к соответствующим сторонам треугольника, a, b, c — стороны треугольника.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика