Какое из следующих утверждений верно?
1) Все углы ромба равны.
2) Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.
Рассмотрим каждое утверждение:
1) "Все углы ромба равны". Ромб, у которого все углы равны - это уже
квадрат. Не каждый
ромб является
квадратом, следовательно данное утверждение неверно.
2) "Если стороны одного четырёхугольника соответственно равны сторонам другого четырёхугольника, то такие четырёхугольники равны" - это утверждение неверно. Можно привести простой пример:
квадрат и
ромб с равными сторонами - стороны равны, а четырехугольники не равны.
3) "Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности" - это утверждение верно по
второму свойству касательной.
Ответ: 3)
Поделитесь решением
Присоединяйтесь к нам...
Точка О – центр окружности, /BAC=70° (см. рисунок). Найдите величину угла BOC (в градусах).
Катеты прямоугольного треугольника равны 12 и 16. Найдите гипотенузу этого треугольника.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Углы при одном из оснований трапеции равны 50° и 40°, а отрезки, соединяющие середины противоположных сторон трапеции, равны 15 и 13. Найдите основания трапеции.
Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Комментарии: