Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Найдите угол ABC, если
угол BAC равен 74°. Ответ дайте в градусах.
По
теореме об описанной окружности, центр описанной окружности лежит на точке пересечения
серединных перпендикуляров сторон треугольника.
У
прямоугольного треугольника центр окрудности лежит на середине гипотенузы, так же как и в треугольнике нашей задачи, следовательно, данный треугольник
прямоугольный.
Следовательно, угол ACB=90°.
По
теореме о сумме углов треугольника:
180°=∠ACB+∠CBA+∠BAC
180°=90°+∠CBA+74°
∠CBA=180°-90°-74°
∠CBA=16°
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=2, AC=8. Найдите AK.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 17:10, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 30.
В треугольнике ABC известно, что AC=14, BM — медиана, BM=10. Найдите AM.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKD.
Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.
Комментарии:
(2018-03-10 15:07:06) ПЕТЯ: центр окружности описанной около треугольника abc лежит на стороне ab НАЙДИТЕ УГОЛ АБС ЕСЛИ УГОЛ ВАС =33 РЕШУ
(2017-05-14 18:53:14) Администратор: Да, можно и так это определить.
(2017-05-13 18:44:14) : То, что треугольник прямоугольный следует из теоремы: вписанный угол, опирающийся на диаметр, равен 90 градусам