Найдите острые углы прямоугольного треугольника, если его гипотенуза равна 48, а площадь равна 288.
Решение прислал пользователь Людмила
Проведем из прямого угла медиану и высоту, обозначив их m и h соответственно.
Если описать окружность вокруг треугольника, то центр этой окружности будет лежать на середине гипотенузы (по
теореме об описанной окружности). Следовательно:
m=c/2=48/2=24
S=(1/2)hc
h=2S/c=2*288/48=288/24=12
По
определению синуса:
sinβ=h/m=12/24=0,5
По таблице определяем, что β=30°
Угол γ является внешнем к β, следовательно γ=180°-β=180°-30°=150°
Треугольник, содержащий угол γ,
равнобедренный, так как медиана m и половина гипотенузы равны (это мы выяснили ранее).
Следовательно, по
свойству равнобедренного треугольника углы при основании равны (обозначены α).
Тогда, по
теореме о сумме углов треугольника:
180°=γ+α+α
180°=150°+2α
α=15° - это один из искомых углов.
Другой искомый угол найдем по той же
теореме об углах треугольника: 180°-90°-15°=75°
ответ: 15° и 75°
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC AC=BC. Внешний угол при вершине B равен 121°. Найдите угол C. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
В прямоугольном треугольнике один из катетов равен 4, а острый угол, прилежащий к нему, равен 45°. Найдите площадь треугольника.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 7:6, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 48.
Окружность, вписанная в треугольник ABC, касается его сторон в точках M, K и P. Найдите углы треугольника ABC, если углы треугольника MKP равны 38°, 78° и 64°.
Комментарии: