ОГЭ, Математика. Геометрия: Задача №1499CA | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №1499CA

Задача №464 из 1087
Условие задачи:

Углы при одном из оснований трапеции равны 48° и 42°, а отрезки, соединяющие середины противоположных сторон трапеции равны 6 и 3. Найдите основания трапеции.

Решение задачи:

Продлим стороны AB и CD до пересечения в точке K.
Рассмотрим треугольник AKD.
По теореме о сумме углов треугольника:
∠AKD+∠KDA+∠DAK=180°
∠AKD+48°+42°=180°
∠AKD=90°
Следовательно треугольник AKD - прямоугольный с гипотенузой AD.
KF - медиана (по условию задачи).
Мысленно опишем вокруг этого треугольника окружность. Так как треугольник прямоугольный, то центр окружности располагается на середине гипотенузы AD (по теореме об описанной окружности).
Следовательно AF=FD=R - радиус окружности, медиана KF тоже равна радиусу и, следовательно, равна AD/2.
Рассмотрим треугольник GKH.
Для этого треугольника KO - медиана и равна половине гипотенузы GH (как и у предыдущего треугольника).
KO=OH=GH/2
В треугольнике BKC - аналогичная ситуация: KE=EC=BC/2
Вернемся к треугольнику GKH:
KO=OH=GH/2=6/2=3
3=OH=KE+EO=EC+EF/2
EC=3-EF/2=3-3/2=1,5
BC=2*EC=2*1,5=3
Рассмотрим трапецию ABCD.
GH - средняя линия, следовательно GH=(BC+AD)/2
2GH=BC+AD
AD=2GH-BC=2*6-3=12-3=9
Ответ: AD=9, BC=3

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №34FF9A

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №165C12

В треугольнике ABC угол C равен 90°, sinA=8/9, AC=217. Найдите AB.



Задача №C8A9ED

Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 10. Найдите BC, если AC=16.



Задача №A74857

Радиус вписанной в квадрат окружности равен 72. Найдите радиус окружности, описанной около этого квадрата.



Задача №201D88

В треугольнике ABC AC=BC. Внешний угол при вершине B равен 154°. Найдите угол C. Ответ дайте в градусах.

Комментарии:


(2014-05-26 13:09:19) : вы сами все решаете?))

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Центр описанной окружности выпуклого n-угольника (а треугольник таковым и является) лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности). Центр описанной окружности.
1) У остроугольного треугольника центр описанной окружности лежит внутри
2) У тупоугольного — вне треугольника
3) У прямоугольного — на середине гипотенузы.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика