ОГЭ, Математика. Геометрия: Задача №4A4F32 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем радиусы к точкам касания с основаниями трапеции.
По первому свойству касательной (основания трапеции), она перпендикулярна радиусу.
Так как радиусы одновременно перпендикулярны параллельным основаниям трапеции, то получается, что радиусы представляют из себя единый отрезок или диаметр (это можно доказать если рассмотреть углы при параллельных прямых и секущей. Прямые углы являются односторонними и их сумма равна 180°).
Диаметр и является высотой трапеции:
h=D=2*R=2*24=48
Ответ: 48

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EF89B8

Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=44, BC=24, CF:DF=3:1.



Задача №0C8F0B

Найдите площадь трапеции, изображённой на рисунке.



Задача №32C056

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.



Задача №5AA177

Какие из данных утверждений верны? Запишите их номера.
1) Каждая из биссектрис равнобедренного треугольника является его медианой.
2) Диагонали прямоугольника равны.
3) У любой трапеции боковые стороны равны.



Задача №A5F365

В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D. Найдите CD.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Трапеция – это четырёхугольник, две противоположные стороны которого параллельны, а две другие не параллельны. Параллельные стороны трапеции называются основаниями, а непараллельные — боковыми сторонами.

Прямоугольная трапеция — трапеция, имеющая прямые углы при боковой стороне.
Трапеция, у которой боковые стороны равны, называется равнобокой, равнобочной или равнобедренной.
Средняя линия — отрезок, соединяющий середины боковых сторон.
Площадь трапеции вычисляется по следующим формулам:
, или
, где m - средняя линия трапеции.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика