Найдите площадь трапеции, диагонали которой равны 15 и 7, а средняя линия равна 10.
Площадь
трапеции равна произведению высоты на полусумму оснований:
SABCD=h*(BC+AD)/2=h*l, где l -
средняя линия трапеции l=(BC+AD)/2. Следовательно, нам надо найти высоту h.
Продлим основание AD и проведем отрезок из вершины C, параллельный BD до пересечения с продленным основанием в точке M (как показано на рисунке).
В четырехугольнике BCMD сторона CM||BD (мы сами так провели СМ) и DM||BC (по определению
трапеции).
Следовательно, четырехугольник BCMD -
параллелограмм.
Тогда, по
свойству параллелограмма, DM=BC.
AM=AD+DM=AD+BC=2l=2*10=20
Рассмотрим треугольник ACM.
Мы знаем длины всех его сторон, следовательно можем найти площадь через полупериметр:
Полупериметр p=(AC+CM+AM)/2=(AC+BD+AM)/2=(15+7+20)/2=21
SACM=√
По другой формуле SACM=h*AM/2=42
h=2*42/AM=2*42/20=4,2
Теперь мы можем вычислить площадь трапеции:
SABCD=h*l=4,2*10=42
Ответ: 42
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 150°, AB=4. Найдите радиус окружности, описанной около этого треугольника.
В треугольнике ABC проведена биссектриса AL, угол ALC равен 169°, угол ABC равен 160°. Найдите угол ACB. Ответ дайте в градусах.
Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен
30°. Найдите площадь трапеции, если её основания равны 2 и 5.
В треугольнике ABC угол C равен 90°, M — середина стороны AB, AB=60, BC=40. Найдите CM.
Площадь прямоугольного треугольника равна 50√
Комментарии:
(2019-04-23 17:16:38) Ваня: Изи