Найдите боковую сторону AB трапеции ABCD, если углы ABC и BCD равны соответственно 60° и 135°, а CD=36.
Дочертим отрезки как показано на рисунке.
DE=AF, т.к. это
высоты
трапеции.
∠DCE=180°-∠BCD=180°-135°=45° (т.к. это
смежные углы).
sin(∠DCE)=ED/CD (по
определению)
sin45°=ED/CD (sin45°=√
√
ED=36√
sin(∠ABF)=AF/AB (по
определению)
sin60°=ED/AB
AB=ED/sin60° (sin60°=√
AB=(18√
Ответ: AB=12√
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, описанной около равностороннего треугольника, равен 10. Найдите высоту этого треугольника.
В треугольнике ABC угол C прямой, BC=3, cosB=0,6. Найдите AB.
Высота равностороннего треугольника равна 78√
AC и BD – диаметры окружности с центром O. Угол ACB равен 74°. Найдите угол AOD. Ответ дайте в градусах.
Пол комнаты, имеющей форму прямоугольника со сторонами 7 м и 9 м, требуется покрыть паркетом из прямоугольных дощечек со сторонами 10 см и 20 см. Сколько потребуется таких дощечек?
Комментарии: