Точка О – центр окружности, /AOB=72° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=72°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 72°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 72/2=36.
Ответ: /ACB=36°.
Поделитесь решением
Присоединяйтесь к нам...
Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.
Диагонали AC и BD параллелограмма ABCD пересекаются в точке O, AC=24, BD=28, AB=6. Найдите DO.
В треугольнике ABC угол C прямой, BC=3, cosB=0,6. Найдите AB.
Картинка имеет форму прямоугольника со сторонами 24 см и 37 см. Её наклеили на белую бумагу так, что вокруг картинки получилась белая окантовка одинаковой ширины. Площадь, которую занимает картинка с окантовкой, равна 1440 см2. Какова ширина окантовки? Ответ дайте в сантиметрах.
Комментарии: