В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.
∠QNM - является
вписанным в окружность и опирается на дугу QM.
∠QPM тоже является
вписанным в окружность и опирается на дугу QM.
Следовательно, эти углы равны.
∠QNM=∠QPM
Рассмотрим треугольники NPQ и SPQ.
∠SQP - общий
∠QNP=∠SPQ
По
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, NQ/QP=QP/SQ
NQ=QP2/SQ=442/16=121
NS=NQ-SQ=121-16=105
Ответ: NS=105
Поделитесь решением
Присоединяйтесь к нам...
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Медиана BM треугольника ABC является диаметром окружности, пересекающей сторону BC в её середине. Найдите длину стороны AC, если радиус описанной окружности треугольника ABC равен 7.
Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.
Стороны AC, AB, BC треугольника ABC равны 2√
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 25, 8 и 7. Найдите площадь параллелограмма ABCD.
Комментарии:
(2015-04-11 21:10:09) Администратор: Равенство NQ/QP=QP/SQ домножаем на QP, получаем NQ=QP*QP/SQ=QP2/SQ
(2015-04-11 21:05:29) Администратор: Задачи с 2014 года, но они актуальны и на 2015 год.
(2015-04-11 19:30:49) : NQ=QP2/SQ=442/16=121почему здесь квадрат?
(2015-04-11 19:30:48) : NQ=QP2/SQ=442/16=121почему здесь квадрат?
(2015-04-11 19:23:51) : а здесь задачи с какого года ?
(2015-04-11 19:23:48) : а здесь задачи с какого года ?
(2015-02-23 07:24:33) Александр: Кратко и доступно