В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.
∠QNM - является
вписанным в окружность и опирается на дугу QM.
∠QPM тоже является
вписанным в окружность и опирается на дугу QM.
Следовательно, эти углы равны.
∠QNM=∠QPM
Рассмотрим треугольники NPQ и SPQ.
∠SQP - общий
∠QNP=∠SPQ
По
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, NQ/QP=QP/SQ
NQ=QP2/SQ=442/16=121
NS=NQ-SQ=121-16=105
Ответ: NS=105
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 32, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
В трапеции ABCD основание AD вдвое больше основания ВС и вдвое больше боковой стороны CD. Угол ADC равен 60°, сторона AB равна 4. Найдите площадь трапеции.
Укажите номера верных утверждений.
1) Центр описанной окружности равнобедренного треугольника лежит на высоте, проведённой к основанию треугольника.
2) Квадрат является прямоугольником.
3) Сумма углов любого треугольника равна
180°.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Катеты прямоугольного треугольника равны 30 и 40. Найдите гипотенузу этого треугольника.
Комментарии:
(2015-04-11 21:10:09) Администратор: Равенство NQ/QP=QP/SQ домножаем на QP, получаем NQ=QP*QP/SQ=QP2/SQ
(2015-04-11 21:05:29) Администратор: Задачи с 2014 года, но они актуальны и на 2015 год.
(2015-04-11 19:30:49) : NQ=QP2/SQ=442/16=121почему здесь квадрат?
(2015-04-11 19:30:48) : NQ=QP2/SQ=442/16=121почему здесь квадрат?
(2015-04-11 19:23:51) : а здесь задачи с какого года ?
(2015-04-11 19:23:48) : а здесь задачи с какого года ?
(2015-02-23 07:24:33) Александр: Кратко и доступно