ОГЭ, Математика. Геометрия: Задача №D2C92F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №D2C92F

Задача №401 из 1087
Условие задачи:

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=64°. Найдите угол NMB. Ответ дайте в градусах.

Решение задачи:

Дуга ANB равна дуге AMB, и обе равны 180°, т.к. AB - диаметр.
/NBA является вписанным в окружность углом, следовательно (по теореме о вписанном угле) дуга AN равна 64°*2=128°.
Тогда дуга NB равна 180°-128°=52°
/NMB - тоже вписанный в окружность, следовательно он равен 52°/2=26°
Ответ: 26

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №07378B

В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.



Задача №89A311

Угол A трапеции ABCD с основаниями AD и BC, вписанной в окружность, равен 52°. Найдите угол B этой трапеции. Ответ дайте в градусах.



Задача №26972C

Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=13.



Задача №3B36AD

Найдите площадь трапеции, изображённой на рисунке.



Задача №97C312

Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Вписанный в окружность угол — это угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика