Найдите угол ABC. Ответ дайте в градусах.
Проведем два отрезка к центру окружности как показано на рисунке.
По координатной сетке видно, что получившийся угол AOC прямой, т.е. равен 90°.
∠AOC является
центральным для окружности, следовательно градусная мера дуги, на которую он опирается, тоже равна 90°.
∠ABC -
вписанный угол и по
теореме равен 90°/2=45°
Ответ: ∠ABC=45°
Поделитесь решением
Присоединяйтесь к нам...
Радиус вписанной в квадрат окружности равен 7√
Найдите площадь трапеции, изображённой на рисунке.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=21, MN=14. Площадь треугольника ABC равна 27. Найдите площадь треугольника MBN.
Две касающиеся внешним образом в точке K окружности, радиусы которых равны 31 и 32, касаются сторон угла с вершиной A. Общая касательная к этим окружностям, проходящая через точку K, пересекает стороны угла в точках B и C. Найдите радиус окружности, описанной около треугольника ABC.
Точка О – центр окружности, /AOB=70° (см. рисунок). Найдите величину угла ACB (в градусах).
Комментарии:
(2015-05-16 19:10:55) Светлана: По свойству вписанных углов данный угол замените равным, опирающимся на ту же самую дугу АС (Вершина такого угла будет лежать четырьмя точками выше от точки А). В полученном прямоугольном треугольнике катеты равны, значит он ещё и равнобедренный. угол равен 45.
(2015-04-06 22:43:44) Администратор: Елена, да, можно и так.
(2015-04-06 18:52:31) Елена: По сетке видно, что дуга АС-это четвёртая часть окружности, значит дуга АС равна 90 градусов. Вписанный угол АВС равен половине дуги на которую он опирается, значит 45 градусов