Точка О – центр окружности, /BOC=50° (см. рисунок). Найдите величину угла BAC (в градусах).
По условию /BOC=50°, этот угол является
центральным, соответственно дуга ВC тоже равна 50°. /BAC - является
вписанным углом и равен половине дуги, на которую опирается (по теореме о вписанном угле). Соответственно, 50/2=25.
Ответ: /BAC=25°.
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=2, AC=8. Найдите AK.
В треугольнике ABC угол C равен 45°, AB=6√
В параллелограмме ABCD точка M — середина стороны CD. Известно, что MA=MB. Докажите, что данный параллелограмм — прямоугольник.
В треугольнике ABC угол C равен 90°, BC=6, sinA=0,6. Найдите AB.
Один из острых углов прямоугольного треугольника равен 48°. Найдите его другой острый угол. Ответ дайте в градусах.
Комментарии: