ОГЭ, Математика. Геометрия: Задача №C6A628 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем два отрезка от центра окружности к точкам А и С, как показано на рисунке.
По координатной сетке видно, что получившийся угол AOC равен 135° (прямой угол + половина от прямого угла, 90°+45°=135°).
∠AOC является центральным для окружности, следовательно градусная мера дуги, на которую он опирается (ABC), тоже равна 135°.
Следовательно, бОльшая дуга имеет градусную меру 360°-135°=225°
∠ABC - вписанный угол, опирается на бОльшую дугу и по теореме равен 225°/2=112,5°
Ответ: 112,5

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F95DA3

В равнобедренной трапеции основания равны 2 и 8, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №8CDAE4

В параллелограмме ABCD диагонали AC и BD пересекаются в точке M. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AMB.



Задача №C8980C

В треугольнике АВС углы А и С равны 20° и 60° соответственно. Найдите угол между высотой ВН и биссектрисой BD.



Задача №5EB66F

Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.



Задача №2C468F

Найдите площадь трапеции, изображённой на рисунке.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Центральный угол в окружности - плоский угол с вершиной в центре этой окружности.
Дуга, на которую опирается центральный угол имеет ту же градусную меру.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика