ОГЭ, Математика. Геометрия: Задача №A7BB6D | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №A7BB6D

Задача №957 из 1087
Условие задачи:

Биссектриса угла A параллелограмма ABCD пересекает сторону BC в точке K. Найдите периметр параллелограмма, если BK=5, CK=14.

Решение задачи:

Периметр параллелограмма:
P=AB+BC+CD+AD
AB=CD и BC=AD (по свойству параллелограмма)
P=AB+BC+AB+BC=2(AB+BC)
∠DAK=∠AKB (т.к. это накрест-лежащие углы).
Следовательно ∠AKB=∠KAB (т.к. AK - биссектриса)
Получается, что треугольник ABK - равнобедренный (по свойству равнобедренного треугольника).
Тогда AB=BK=5
P=2(AB+BC)=2(AB+BK+CK)=2(5+5+14)=2*24=48
Ответ: 48

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1A8117

Точка O – центр окружности, на которой лежат точки A, B и C таким образом, что OABC – ромб. Найдите угол ABC. Ответ дайте в градусах.



Задача №D5823B

Радиус окружности, вписанной в прямоугольную трапецию, равен 18. Найдите высоту этой трапеции.



Задача №284FD7

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что ∠NBA=60°. Найдите угол NMB. Ответ дайте в градусах.



Задача №E88B74

Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите AC, если диаметр окружности равен 5,25, а AB=9.



Задача №3A524F

Площадь прямоугольного треугольника равна 2003/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика