ОГЭ, Математика. Геометрия: Задача №00CECE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №00CECE

Задача №412 из 1087
Условие задачи:

Сторона AB параллелограмма ABCD вдвое больше стороны AD. Точка K — середина стороны AB. Докажите, что DK — биссектриса угла ADC.

Решение задачи:

Рассмотрим треугольник AKD.
AK=AD (по условию задачи), следовательно данный треугольник равнобедренный.
По свойству равнобедренного треугольника ∠ADK=∠AKD
∠AKD=∠KDC (т.к. это накрест-лежащие углы).
Получается, что ∠ADK=∠AKD=∠KDC.
Следовательно DK - биссектриса.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №029FEC

Боковая сторона равнобедренного треугольника равна 34, а основание равно 60. Найдите площадь этого треугольника.



Задача №936640

Основания трапеции равны 11 и 19, а высота равна 9. Найдите среднюю линию этой трапеции.



Задача №F77008

Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.



Задача №A44A54

Радиус окружности, вписанной в равносторонний треугольник, равен 12. Найдите высоту этого треугольника.



Задача №09A5AF

К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.

Комментарии:


(2014-05-26 22:01:15) Администратор: Елена, потому, что ∠ADK=∠AKD, а ∠AKD=∠KDC.
(2014-05-26 18:30:51) Елена: почему ∠ADK=∠KDC.

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Углы при параллельных прямых и секущей.
Пусть прямая c пересекает параллельные прямые a и b. При этом образуется восемь углов.
Углы 1 и 3 — вертикальные. Очевидно, вертикальные углы равны,то есть /1=/3, а /2=/4.
Углы 1 и 2 — смежные. Сумма смежных углов равна 180°.
Углы 3 и 5 (а также 1 и 7, 2 и 8, 4 и 6) — накрест лежащие. Накрест лежащие углы равны.
Углы 1 и 6 — односторонние. Они лежат по одну сторону от секущей. Углы 4 и 7 — тоже односторонние. Сумма односторонних углов равна 180°.
Углы 2 и 6 (а также 3 и 7, 1 и 5, 4 и 8) называются соответственными. Cоответственные углы равны.
Углы 3 и 5 (а также 2 и 8, 1 и 7, 4 и 6) называют накрест лежащими. Накрест лежащие углы равны.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика