Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.
Рассмотрим каждое утверждение:
1) "Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны", это утверждение верно, т.к. это один из
признаков подобия.
2) "Сумма смежных углов равна 180°", это утверждение верно (по
определению).
3) "Любая медиана равнобедренного треугольника является его биссектрисой", это утверждение неверно, т.к. по
свойству равнобедренного треугольника, только
медиана, проведенная к основанию, является и
биссектрисой, и
высотой.
Поделитесь решением
Присоединяйтесь к нам...
Радиус окружности, вписанной в равносторонний треугольник, равен 12. Найдите высоту этого треугольника.
В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=16, BC=15.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 2 м, если длина его тени равна 1 м, высота фонаря 9 м?
Биссектрисы углов A и D параллелограмма ABCD пересекаются в точке, лежащей на стороне BC. Найдите BC, если AB=26.
Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=44, MN=24. Площадь треугольника ABC равна 121. Найдите площадь треугольника MBN.

Комментарии:
(2019-02-09 22:51:17) Администратор: Оксана, если в треугольниках равны все 3 угла, то два угла этих треугольников, тем более равны, поэтому эту утверждение верно.
(2019-02-09 12:55:32) Оксана: 1 утверждение неверно, так как первый признак подобия гласит, что треугольники могут быть подобны по 2ум равным углам. Все остальные вариации этого утверждения не являются верными.
(2014-04-30 16:44:21) Администратор: Вика, по первому признаку подобия, в ответе есть ссылка.
(2014-04-30 16:42:36) Вика: а почему 1 утверждение верно?