Укажите номера верных утверждений.
1) Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны.
2) Сумма смежных углов равна 180°.
3) Любая медиана равнобедренного треугольника является его биссектрисой.
Рассмотрим каждое утверждение:
1) "Если три угла одного треугольника равны трем углам другого треугольника, то такие треугольники подобны", это утверждение верно, т.к. это один из
признаков подобия.
2) "Сумма смежных углов равна 180°", это утверждение верно (по
определению).
3) "Любая медиана равнобедренного треугольника является его биссектрисой", это утверждение неверно, т.к. по
свойству равнобедренного треугольника, только
медиана, проведенная к основанию, является и
биссектрисой, и
высотой.
Поделитесь решением
Присоединяйтесь к нам...
Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=79°. Найдите величину угла BOC. Ответ дайте в градусах.
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=24, BC=18. Найдите AD.
Биссектриса угла A параллелограмма ABCD пересекает сторону BC
в точке K. Найдите периметр параллелограмма, если BK=6, CK=10.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=7 и HD=24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.

Комментарии:
(2019-02-09 22:51:17) Администратор: Оксана, если в треугольниках равны все 3 угла, то два угла этих треугольников, тем более равны, поэтому эту утверждение верно.
(2019-02-09 12:55:32) Оксана: 1 утверждение неверно, так как первый признак подобия гласит, что треугольники могут быть подобны по 2ум равным углам. Все остальные вариации этого утверждения не являются верными.
(2014-04-30 16:44:21) Администратор: Вика, по первому признаку подобия, в ответе есть ссылка.
(2014-04-30 16:42:36) Вика: а почему 1 утверждение верно?