В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.
∠QNM - является
вписанным в окружность и опирается на дугу QM.
∠QPM тоже является
вписанным в окружность и опирается на дугу QM.
Следовательно, эти углы равны.
∠QNM=∠QPM
Рассмотрим треугольники NPQ и SPQ.
∠SQP - общий
∠QNP=∠SPQ
По
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, NQ/QP=QP/SQ
NQ=QP2/SQ=442/16=121
NS=NQ-SQ=121-16=105
Ответ: NS=105
Поделитесь решением
Присоединяйтесь к нам...
Сторона квадрата равна 38√2. Найдите радиус окружности, описанной около этого квадрата.
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что треугольник MNK — равносторонний.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные 25° и 100° соответственно.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии:
(2015-04-11 21:10:09) Администратор: Равенство NQ/QP=QP/SQ домножаем на QP, получаем NQ=QP*QP/SQ=QP2/SQ
(2015-04-11 21:05:29) Администратор: Задачи с 2014 года, но они актуальны и на 2015 год.
(2015-04-11 19:30:49) : NQ=QP2/SQ=442/16=121почему здесь квадрат?
(2015-04-11 19:30:48) : NQ=QP2/SQ=442/16=121почему здесь квадрат?
(2015-04-11 19:23:51) : а здесь задачи с какого года ?
(2015-04-11 19:23:48) : а здесь задачи с какого года ?
(2015-02-23 07:24:33) Александр: Кратко и доступно