На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 6 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 1,5 м?
Рисунок,предложенный в задаче можно условно перерисовать в виде треугольников.
h1 - изначальная высота длинного плеча журавля.
h2 - конечная высота длинного плеча журавля.
h3 - изначальная высота короткого плеча журавля.
h4 - конечная высота короткого плеча журавля.
h3-h4=1,5 метра (по условию задачи).
Нам надо найти:
h1-h2=?.
Рассмотрим треугольники AOE и COG.
1) ∠AOE=∠COG, т.к. они
вертикальные.
2) ∠AEO=∠CGO=90°
Следовательно, треугольники AOE и COG
подобны (по первому признаку подобия). Отсюда следует, что h1/OA=h3/OC.
Треугольники BOF и DOI тоже
подобны (аналогично предыдущим треугольникам).
Тогда:
h2/OB=h4/OD
OA=OB и OC=OD (так как длины плеч журавля не меняются), тогда:
h2/OA=h4/OC
Вычтем из первого равенства второе:
h1/OA-h2/OA=h3/OC-h4/OC.
(h1-h2)/OA=(h3-h4)/OC.
(h1-h2)/6=1,5/2.
h1-h2=6*1,5/2=4,5.
Ответ: 4,5.
Поделитесь решением
Присоединяйтесь к нам...
Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.
Лестница соединяет точки A и B и состоит из 40 ступеней. Высота каждой ступени равна 10,5 см, а длина – 36 см. Найдите расстояние между точками A и B (в метрах).
Радиус окружности с центром в точке O равен 50, длина хорды AB равна 96 (см. рисунок). Найдите расстояние от хорды AB до параллельной ей касательной k.
Углы B и C треугольника ABC равны соответственно 65° и 85°. Найдите BC, если радиус окружности, описанной около треугольника ABC, равен 14.
Точка О — центр окружности, ∠BOC=160°. Найдите величину угла BAC (в градусах).
Комментарии: