ОГЭ, Математика. Геометрия: Задача №A810F6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

ABCD - трапеция, следовательно, AD||BC.
∠CBD=∠ADB (т.к. это накрест-лежащие углы для параллельных прямых AD и BC).
Рассмотрим отношения сторон:
BC/BD=5/10=1/2
BD/AD=10/20=1/2
Тогда по второму признаку подобия треугольников, треугольники CBD и BDA подобны.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №973E15

В трапеции АВСD боковые стороны AB и CD равны, CH — высота, проведённая к большему основанию AD. Найдите длину отрезка HD, если средняя линия KM трапеции равна 12, а меньшее основание BC равно 4.



Задача №060EC8

В выпуклом четырехугольнике ABCD AB=BC, AD=CD, ∠B=100° , ∠D=104°. Найдите угол A . Ответ дайте в градусах.



Задача №3A1860

Площадь прямоугольного треугольника равна 9683. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №0511E1

На какой угол (в градусах) поворачивается минутная стрелка, пока часовая проходит 11°?



Задача №5F0BC9

Синус острого угла A треугольника ABC равен . Найдите CosA.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Признаки подобия треугольников:
1) Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.

2) Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.

a/d=c/f
3) Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.

a/d=c/f=b/e
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика