ОГЭ, Математика. Геометрия: Задача №9FCAB9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №9FCAB9

Задача №675 из 1087
Условие задачи:

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 96. Найдите стороны треугольника ABC.

Решение задачи:

Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=96/2=48.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). SEDC=SEDB=(BE*OD)/2=(96*48)/2=48*48=2304
SABE=(BE*AO)/2=(96*48)/2=2304
Т.е. SABE=SEDC=SEDB=2304
Тогда, SABС=3*2304=6912
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
SABD=(AD*BO)/2=SABC/2
(96*BO)/2=6912/2
BO=6912/96=72
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB2=BO2+AO2
AB2=722+482
AB2=5184+2304=7488
AB=7488= 13*576=2413
BC=2AB=2*2413=4813
Рассмотрим треугольник AOE.
OE=BE-BO=96-72=24
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE2=AO2+OE2
AE2=482+242=2304+576=2880
AE=2880=576*5=245
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
4813/2413=CE/(245)
2=CE/(245)
CE=485
AC=AE+CE=245+485=725
Ответ: AB=2413, BC=4813, AC=725

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9A0CCB

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно. Найдите BN, если MN=15, AC=25, NC=22.



Задача №A92357

Хозяин участка планирует устроить в жилом доме зимнее отопление. Он рассматривает два варианта: электрическое или газовое отопление. Цены на оборудование и стоимость его установки, данные о расходе газа, электроэнергии и их стоимости даны в таблице.

Нагреватель (котёл) Прочее оборудование и монтаж Средн. расход газа/ средн. потребл. мощность Стоимость газа/электро­энергии
Газовое отопление 24 000 руб. 18 280 руб. 1,2 куб. м/ч 5,6 руб./куб. м
Электр. отопление 20 000 руб. 15 000 руб. 5,6 кВт 3,8 руб./(кВт*ч)

Обдумав оба варианта, хозяин решил установить газовое оборудование. Через сколько часов непрерывной работы отопления экономия от использования газа вместо электричества компенсирует разность в стоимости устройства газового и электрического отопления?



Задача №203B94

Точка D на стороне AB треугольника ABC выбрана так, что AD=AC. Известно, что ∠CAB=122° и ∠ACB=47°. Найдите угол DCB. Ответ дайте в градусах.



Задача №FB6FF2

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади четырёхугольника KPCM к площади треугольника AMK.



Задача №BBD8DF

Площадь параллелограмма ABCD равна 30. Точка E – середина стороны CD. Найдите площадь трапеции ABED.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Прямоугольный треугольник — это треугольник, в котором один угол прямой (то есть составляет 90°).
Сторона, противоположная прямому углу, называется гипотенузой (сторона c на рисунке).
Стороны, прилегающие к прямому углу, называются катетами.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика