В остроугольном треугольнике ABC высота AH равна 20√
Треугольник ABH
прямоугольный, т.к. AH -
высота.
Тогда по
теореме Пифагора:
AB2=AH2+BH2
402=(20√
1600=400*3+BH2
400=BH2
BH=20
По
определению:
cos∠B=BH/AB=20/40=1/2=0,5
Ответ: cos∠B=0,5
Поделитесь решением
Присоединяйтесь к нам...
Дан правильный шестиугольник. Докажите, что если его вершины последовательно соединить отрезками через одну, то получится равносторонний треугольник.
Касательные к окружности с центром O в точках A и B пересекаются под углом 6°. Найдите угол ABO. Ответ дайте в градусах.
В параллелограмме АВСD проведены перпендикуляры ВЕ и DF к диагонали АС (см. рисунок). Докажите, что отрезки ВF и DЕ параллельны.
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=7 и HD=24. Диагональ параллелограмма BD равна 51. Найдите площадь параллелограмма.
Комментарии:
(2021-12-15 15:59:07) хуесос: )))