ОГЭ, Математика. Геометрия: Задача №B93381 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Рассмотрим треугольники AA1C и BB1C.
∠ACA1=∠BCB1, так как они вертикальные.
∠AA1C=∠BB1C, так как они прямые по условию задачи.
Следовательно, по первому признаку подобия треугольников, данные треугольники подобны.
Тогда, по определению подобных треугольников:
AC/BC=A1C/B1C
Преобразуем это равенство:
AC/A1C=BC/B1C
Рассмотрим треугольники A1CB1 и ABC.
∠ACB=∠A1CB1, так как они вертикальные.
Тогда, по второму признаку подобия, данные треугольники подобны.

ч.т.д.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №04CBF1

Найдите площадь ромба, если его диагонали равны 39 и 2.



Задача №28DF91

Площадь прямоугольного треугольника равна 503. Один из острых углов равен 60°. Найдите длину катета, прилежащего к этому углу.



Задача №04ECFA

На стороне AB треугольника ABC взята такая точка D так, что окружность, проходящая через точки A, C и D, касается прямой BC. Найдите AD, если AC=40, BC=45 и CD=24.



Задача №24164D

В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=64, HC=16 и ∠ACB=37°. Найдите угол AMB. Ответ дайте в градусах.



Задача №F99836

Радиус окружности, вписанной в равносторонний треугольник, равен 10√3. Найдите длину стороны этого треугольника.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Подобные треугольники
— треугольники, у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.


k - называется коэффициент подобия.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика