В треугольнике ABC с тупым углом ACB проведены высоты AA1 и BB1. Докажите, что треугольники A1CB1 и ACB подобны.
Рассмотрим треугольники AA1C и BB1C.
∠ACA1=∠BCB1, так как они
вертикальные.
∠AA1C=∠BB1C, так как они прямые по условию задачи.
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда, по
определению подобных треугольников:
AC/BC=A1C/B1C
Преобразуем это равенство:
AC/A1C=BC/B1C
Рассмотрим треугольники A1CB1 и ABC.
∠ACB=∠A1CB1, так как они
вертикальные.
Тогда, по
второму признаку подобия, данные треугольники
подобны.
Поделитесь решением
Присоединяйтесь к нам...
Площадь прямоугольного треугольника равна 32√
В треугольнике ABC AB=BC, а высота AH делит сторону BC на отрезки BH=48 и CH=2. Найдите cosB.
Найдите площадь трапеции, изображённой на рисунке.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Комментарии: