К окружности с центром в точке O проведены касательная AB и секущая AO. Найдите радиус окружности, если AB=40, AO=85.
Проведем отрезок ОВ.
Отрезок OB - это радиус окружности и этот отрезок перпендикулярен AB (по
свойству
касательной).
Следовательно, треугольник AOB -
прямоугольный, тогда, по
теореме Пифагора:
AO2=AB2+OB2
852=402+OB2
7225=1600+OB2
OB2=5625
OB=75=R
Ответ: 75
Поделитесь решением
Присоединяйтесь к нам...
Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности
в точке K. Другая прямая пересекает окружность
в точках B и C, причём AB=4, AC=64. Найдите AK.
Лестницу длиной 2,5 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 0,7 м?
Высота равностороннего треугольника равна
15√
Найдите площадь треугольника, изображённого на рисунке.
Стороны AC, AB, BC треугольника ABC равны 2√
Комментарии:
(2019-05-05 11:40:38) Администратор: Коля, Вы имеете ввиду написать само слово \"Дано\"?
(2019-05-05 10:35:58) коля : напишите пожалуста дано спасибо