ОГЭ, Математика. Геометрия: Задача №FB70A6 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №FB70A6

Задача №309 из 1087
Условие задачи:

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник BCP, равен 5 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.

Решение задачи:

Радиус вписанной окружности можно вычислить по формуле R=(AC+CB-AB)/2. Для этого необходимо вычислить длины всех сторон данного треугольника.
Рассмотрим треугольник ABC.
По определению tgABC=AC/CB=2,4 => AC=2,4*CB.
По теореме Пифагора AB2=AC2+CB2
AB2=(2,4*CB)2+CB2
AB2=(CB/2,4)2+(2,4*CB/2,4)2
AB2=5,76*CB2+CB2
AB2=6,76*CB2
AB=2,6*CB
Необходимо вычислить CB.
Рассмотрим треугольник BCP.
По определению tgABC=CP/BP=2,4 => CP=2,4*BP
По теореме Пифагора CB2=CP2+BP2
CB2=(2,4*BP)2+BP2
CB2=6,76*BP2
CB=2,6*BP
BP=CB/2,6
r=(BP+CP-CB)/2
2*r=BP+2,4*BP-2,6*BP
2*5=0,8*BP
BP=12,5
CB=2,6*BP=2,6*12,5=32,5
Вычислив CB, мы можем вычислить AB и AC, указанные выше:
AB=2,6*CB=2,6*32,5=84,5
AC=2,4*CB=2,4*32,5=78
R=(AC+CB-AB)/2, тогда получаем:
R=(78+32,5-84,5)/2=13.
Ответ: R=13.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №1BBB13

В треугольнике ABC угол C равен 90°, tgB=7/6, BC=18. Найдите AC.



Задача №AB7216

В параллелограмме ABCD диагонали AC и BD пересекаются в точке O. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника COD.



Задача №1A8DC8

ABCDEFGHIJ – правильный десятиугольник. Найдите угол IBJ. Ответ дайте в градусах.



Задача №60DE1B

В треугольнике ABC угол C прямой, AC=8, cosA=0,4. Найдите AB.



Задача №032494

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема Пифагора.
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

c2=a2+b2
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика