Радиус окружности, описанной около равностороннего треугольника, равен 6. Найдите высоту этого треугольника.
По
третьему свойству
равностороннего треугольника:
R=a√
6=a√
18=a√
a=18/√
По второму свойству:
h=a*√

Ответ: 9
Поделитесь решением
Присоединяйтесь к нам...
Хорды AC и BD окружности пересекаются в точке P, BP=9, CP=15, DP=20. Найдите AP.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.
Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 12 см, тангенс угла ABC равен 2,4. Найдите радиус вписанной окружности треугольника ABC.
Синус острого угла A треугольника ABC равен √
Комментарии: