ОГЭ, Математика.
Геометрия: Задача №F48418
| Задача №312 из 1087 Условие задачи: | |
Площадь параллелограмма
ABCD равна 56. Точка E — середина стороны
CD. Найдите площадь трапеции AECB.
Решение задачи:
Первый вариант решения

Проведем высоту
параллелограмма DO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
S
параллелограмма=AB*h=56
А площадь
трапеции равна произведению полусуммы оснований на высоту.
S
трапеции=h*(AB+EC)/2.
EC=DC/2 (по условию задачи).
DC=AB (по
свойству параллелограмма).
Следовательно EC=AB/2.
Тогда S
трапеции=h*(AB+AB/2)/2 = h*(3*AB/2)/2 = h*3*AB/4=h*AB*3/4 = S
парал-ма*3/4=56*3/4=42.
Ответ: S
трапеции=42.
Второй вариант решения задачи
Прислал пользователь Юлия

1) Отметим точку М на АB, так чтобы AM=MB
S
ADEM=S
MECB, т.к. ЕМ делит ABCD на равные части.
2) Треугольник AED равен треугольнику EAM (по
первому признаку):
/AED =
/EAM (т.к. AB||CD, AE - секущая, а эти углы -
внутренние накрест лежащие)
DЕ=AM
AE - общая сторона
3) Пусть площадь треугольника AED = х, тогда S
ABCD = 4x т.к EM делит ABCD пополам.
4x = 56
x = 14
4) S
AECB = S
ABCD - S
AED = 4x-x = 3x
S
AECB = 3*14 = 42
Ответ: площадь трапеции 42 см в кв.
Вы можете поблагодарить автора, написать свои претензии или предложения на
странице 'Про нас'
Другие задачи из этого раздела
В треугольнике ABC угол C равен 90°, sinB=3/7, AB=21. Найдите AC.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.
Одна из биссектрис треугольника делится точкой пересечения биссектрис в отношении 3:1, считая от вершины. Найдите периметр треугольника, если длина стороны треугольника, к которой эта биссектриса проведена, равна 41.
Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону
BC в точке P. Найдите отношение площади треугольника ABC к площади четырёхугольника KPCM.
Косинус острого угла A треугольника ABC равен
. Найдите sinA.
Комментарии: