Сторона равностороннего треугольника равна 10√
По
определению равностороннего треугольника:
AB=BC=AC=10√
По
свойству равностороннего треугольника,
биссектриса является так же и
медианой, и
высотой.
Следовательно:
1) BD перпендикулярен AC (т.к. BD -
высота), т.е. треугольник ABD -
прямоугольный.
2) AD=AC/2.
По
теореме Пифагора:
AB2=BD2+AD2
AB2=BD2+(AC/2)2
(10√
100*3=BD2+(5√
300=BD2+25*3
300=BD2+75
BD2=225
BD=15
Ответ: 15
Поделитесь решением
Присоединяйтесь к нам...
Вершины треугольника делят описанную около него окружность на три дуги, длины которых относятся как 3:7:8. Найдите радиус окружности, если меньшая из сторон равна 20.
Боковые стороны AB и CD трапеции ABCD равны соответственно 20 и 25, а основание BC равно 5. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
Найдите площадь квадрата, описанного около окружности радиуса 32.
Катеты прямоугольного треугольника равны 20 и 15. Найдите синус наименьшего угла этого треугольника.
Длина хорды окружности равна 130, а расстояние от центра окружности до этой хорды равно 72. Найдите диаметр окружности.
Комментарии:
(2017-03-30 23:06:34) Администратор: Акиф, в решении есть ссылки на материалы, на которые я ссылаюсь в решении - это первое. Поясните, начиная с какой строки Вам непонятно...Я обязательно поясню.
(2017-03-29 22:54:04) Акиф: Можете по подробней объяснить ?