ОГЭ, Математика. Геометрия: Задача №2866C2 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Рассмотрим треугольник АОВ. Этот треугольник равнобедренный, т.к. ОА и ОВ - радиусы, поэтому они равны.
По свойству равнобедренного треугольника /OAB=/OBA.
Рассмотрим треугольники АОВ и COD. /DOC=/AOB, т.к. они вертикальные. СО=DO=OB=OA, т.к. это радиусы окружности.
Следовательно, треугольники АОВ и COD равны (по первому признаку). Поэтому /OBA=/OAB=/ODC=/OCD=55°
Ответ: /OCD=55°.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №BC288C

В прямоугольнике одна сторона равна 96, а диагональ равна 100. Найдите площадь прямоугольника.



Задача №680A2D

Точка О – центр окружности, /BAC=75° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №3CF02F

В треугольнике ABC известно, что AB=BC, ∠ABC=102°. Найдите угол BCA. Ответ дайте в градусах.



Задача №D5BFDE

От столба высотой 9 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 12 м. Вычислите длину провода.



Задача №CE92B7

Основание AC равнобедренного треугольника ABC равно 18. Окружность радиуса 12 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Комментарии:


(2017-02-14 20:09:10) Администратор: Катя, была проблема у хостера, проблема устранена. Сейчас все читаемо?
(2017-02-14 14:50:46) Катя: не грузит решение, все в знаках вопроса. что такое??

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Равнобедренный треугольник - это треугольник, в котором две стороны равны между собой по длине. Равные стороны называются боковыми, а последняя — основанием.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика