Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.
BC=CD/2=CF (по условию задачи)
Следовательно треугольник BCF -
равнобедренный.
По
свойству равнобедренного треугольника:
∠CFB=∠CBF
∠CFB=∠ABF (так как это
накрест-лежащие углы)
Получается, что ∠CBF=∠ABF
Следовательно, BF -
биссектриса.
Поделитесь решением
Присоединяйтесь к нам...
Высота AH ромба ABCD делит сторону CD на отрезки DH=21 и CH=8. Найдите высоту ромба.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.
Какие из данных утверждений верны? Запишите их номера.
1) Против большей стороны треугольника лежит больший угол.
2) Любой прямоугольник можно вписать в окружность.
3) Площадь треугольника меньше произведения двух его сторон.
Высота равностороннего треугольника равна 15√
На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что
/EAB=45°. Найдите ED.
Комментарии:
(2022-09-12 10:35:22) : АВ = CD = 14 см, ВС = AD = 27 см за властивостями параллелограмма Р ABCD = АВ + CD + ВС + AD Р ABCD = … Відповідь :