ABCDEFGHIJ – правильный десятиугольник. Найдите угол IBJ. Ответ дайте в градусах.
Вариант 1 (Предложил пользователь Светлана)
Вокруг любого
правильного многоугольника можно описать окружность, сделаем это.
Очевидно, что отрезки, проведенные из центра окружности к углам десятиугольника образуют равные углы, так как разбивают десятиугольник на равные треугольники.
Такой угол (например ∠IOJ) равен 360°/10=36°
∠IOJ является
центральным, следовательно градусная мера дуги тоже равна 36°
∠IBJ тоже опирается на эту же дугу, но является
вписанным, следовательно:
∠IBJ=36°/2=18° (по
теореме о вписанном угле)
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
Прямая AD, перпендикулярная медиане ВМ треугольника АВС, делит угол ВАС пополам. Найдите сторону АВ, если сторона АС равна 4.
Синус острого угла A треугольника ABC равен . Найдите CosA.
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
Укажите номера верных утверждений.
1) Медиана равнобедренного треугольника, проведённая из вершины угла, противолежащего основанию, делит этот угол пополам.
2) Не существует прямоугольника, диагонали которого взаимно перпендикулярны.
3) В плоскости для точки, лежащей вне круга, расстояние до центра круга больше его радиуса.
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 10, 9 и 6. Найдите площадь параллелограмма ABCD.
Комментарии: